О парадоксе существования волн электромагнитного поля и их способности переноса полевой энергии
О парадоксе существования волн электромагнитного поля и их способности переноса полевой энергии
О ПАРАДОКСЕ
СУЩЕСТВОВАНИЯ ВОЛН ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ИХ СПОСОБНОСТИ ПЕРЕНОСА ПОЛЕВОЙ
ЭНЕРГИИ
Сидоренков В.В.
МГТУ им. Н.Э. Баумана
Хотя
реальное наблюдение необычного для современных представлений вихревого четырехвекторного
поля, условно названного реальным электромагнитным полем – дело будущего,
объективность его существования и неоспоримая практическая значимость достоверно
подтверждается принципиальной невозможностью реализации без посредства его
компонент ряда известных физических характеристик электромагнитного поля, в частности,
переноса электромагнитной энергии.
Концепция электромагнитного
(ЭМ) поля является основополагающей и центральной в классической электродинамике, поскольку считается
[1], что с помощью этого поля осуществляется взаимодействие разнесенных в пространстве электрических зарядов.
При этом полагают все явления электромагнетизма физически
полно представленными указанным полем, свойства которого исчерпывающе
описываются системой электродинамических уравнений Максвелла:
(a) , (b) , (1)
(c) , (d) ,
где – постоянная времени
релаксации заряда в среде за счет ее электропроводности. Эти уравнения
рассматривают области пространства, где присутствует ЭМ поле, структурно
реализуемое, согласно уравнениям (1а) и (1c), посредством динамически
неразрывно связанных между собой двух векторных взаимно ортогональных полевых
компонент: электрической и
магнитной напряженности.
Уравнение (1b) описывает результат явления электрической поляризации в виде
отклика материальной среды на наличие в данной точке стороннего электрического
заряда ( –
объемная плотность стороннего заряда) либо при воздействии на электронейтральную
среду () внешнего
электрического поля. Соответственно, уравнение (1d) характеризует явление (намагниченности)
магнитной поляризации.
Важнейшим фундаментальным следствием
уравнений Максвелла служит тот факт, что компоненты и описываемого поля распространяются в
пространстве в виде электродинамических волн. Например, из (1а) и (1c) так
можно получить волновое уравнение для поля электрической напряженности :
.
Аналогично получим волновое уравнение для
магнитной напряженности .
Видно, что скорость распространения этих волн определяется только лишь
электрическими и магнитными параметрами пространства: , и , в частности, в отсутствие поглощения . С точки зрения большей общности
при анализе волнового распространения ЭМ поля обычно значительно удобней
использовать не волновые уравнения, а напрямую - сами уравнения системы (1),
являющиеся первичными уравнениями ЭМ волны.
Проанализируем в нашем случае параметры
распространения ЭМ поля в виде плоской линейно поляризованной волны в
однородной изотропной материальной среде. С этой целью рассмотрим волновой
пакет, распространяющийся вдоль оси x с компонентами и ,
которые представим комплексными спектральными интегралами:
и , где и – комплексные амплитуды.
Подставляя их в
уравнения Максвелла (1a) и (1c), приходим к соотношениям и . В итоге получаем для уравнений
системы (1) выражение: .
В конкретном
случае среды идеального диэлектрика () с учетом формулы из следует обычное дисперсионное соотношение [1], описывающее
однородные плоские волны ЭМ поля. При этом связь комплексных амплитуд в
волновых решениях уравнений системы (1) представится в следующем виде: , а сами волновые решения
описывают ЭМ волну, компоненты поля и которой синфазно () распространяются в пространстве.
Поскольку суть
электромагнетизма – это взаимодействие ЭМ поля с материальной средой, то его
анализ обычно сводится к стремлению описать энергетику ЭМ явлений. Это можно
сделать при совместном решения уравнений системы (1), результат которого позволяет
записать аналитическую формулировку закона сохранения ЭМ энергии в виде
так называемой теоремы Пойнтинга:
, (2)
и тем самым
ответить на вопрос, что переносят ЭМ волны. Согласно (2), поток ЭМ энергии,
определяемый вектором Пойнтинга , идет на компенсацию в данной точке среды
джоулевых (тепловых) потерь в процессе электропроводности и на изменение электрической
и магнитной энергий, либо наоборот, указанные процессы вызывают излучение
наружу потока ЭМ энергии.
Обратимся и мы к закону
сохранения энергии, который, согласно (2), для среды идеального диэлектрика
() запишется в
виде:
. (3)
Для анализа нам
вполне достаточно рассмотреть, как выполняется выражение (3) для плоской
монохроматической ЭМ волны, полевые компоненты которой, согласно волновым
решениям уравнений Максвелла, в свободном пространстве без потерь при распространении
совершают синфазные колебания: и . Подставляя эти выражения в соотношение (3),
окончательно получаем:
. (4)
Здесь , так как по определению - это объемная плотность потока векторного
поля в данной точке, а потому для бегущей волны в пространстве без потерь усредненный
по времени поток ее энергии через замкнутую поверхность будет равен нулю.
Как видим,
решение уравнений электродинамики Максвелла (1) для плоской ЭМ волны не
отвечает обычным физическим представлениям о распространении энергии посредством
волн (процесс взаимного преобразования во времени в данной точке пространства
энергии одной компоненты в энергию другой компоненты). Следовательно,
электродинамические уравнения (1) описывают необычные, более чем странные
волны, которые логично назвать псевдоволнами, поскольку с одной стороны,
синфазные волны в принципе не способны переносить ЭМ энергию, а с другой –
перенос энергии реально наблюдается, более того это, явление широко и всесторонне
используется на практике, определяя многие аспекты жизни современного общества.
Таким образом,
имеем парадокс, и как это ни странно, существующий уже более века. Здесь
поражает то, что логика обсуждения переноса ЭМ энергии такова, что проблемы как
бы и нет, всем все понятно. Например, в нашем случае из соотношения для комплексных
амплитуд в волновых решениях уравнений системы (1) формально следует, что для ЭМ
энергии , хотя
эту энергию, как показано выше, посредством синфазных волн ЭМ поле переносить
не способно в принципе. Правда, изредка делаются попытки действительно
разобраться в этом вопросе, но эти объяснения (например, [2]), на наш взгляд, не
выдерживают критики, поскольку обсуждаются не сами уравнения Максвелла или их
прямые следствия, а то, что эти уравнения не учитывают характеристики реальных
ЭМ излучателей или некую специфику взаимодействия материальной среды с ЭМ полем
при распространении его волн. Это, по мнению авторов, создает сдвиг фазы колебаний
между компонентами на .
В этой связи
напомним основные физические представления о переносе энергии посредством
волнового процесса, например, рассмотрим распространение волн от брошенного в
воду камня. Частицы воды массой , поднятые на гребне волны на высоту , имеют запас потенциальной
энергии , а через
четверть периода колебаний, когда гребень волны спадает, в соответствии с законом
сохранения энергии потенциальная энергия частиц воды переходит в
кинетическую энергию их движения , где скорость частиц воды . Наличие взаимодействия молекул
воды и приводит к возбуждению механической поверхностной поперечной волны, которая
переносит в волновом процессе механическую энергию так, что . Физически очевидно считать, что
механизм переноса энергии ЭМ волнами в главном должен быть аналогичен, как и у
других волн иной физической природы, возможно обладая при этом, исходя из
электродинамических уравнений Максвелла, определенной спецификой и даже уникальностью.
Для большей
убедительности наших аргументов чисто формально рассмотрим энергетику
распространения некой гипотетической ЭМ волны, у которой имеется
сдвиг фазы колебаний между ее компонентами на : и . Физически очевидно, что подставлять их в
соотношение (3) не имеет смысла, поскольку, согласно уравнениям Максвелла,
теоремы Пойнтинга (2) для них нет, да и данные волновые решения принципиально никак
не следуют из уравнений (1). Однако весьма интересно вычислить для такой волны просто
поток вектора Пойнтинга в
данной точке:
.
Тогда здесь после
усреднения по времени мы приходим к физически разумному результату, когда в
пространстве без потерь посредством обсуждаемой гипотетической волны
переносится ЭМ энергия ,
не зависящая от времени и точек пространства. Следовательно, в данном случае,
как и должно быть, имеем закон сохранения ЭМ энергии. К сожалению, как
мы убедились выше, это невозможно в принципе, поскольку, согласно уравнениям
Максвелла, в Природе такие гипотетические ЭМ волны не реализуются.
Итак, проблема с
выяснением физического механизма переноса энергии “обычными” волнами ЭМ поля объективно
существует, и для ее разрешения требуется, по всей видимости, весьма
нестандартный подход. Однако в наличии у нас имеется только система уравнений
электродинамики Максвелла, а потому для разрешения обсуждаемого здесь парадокса
ничего не остается, как продолжить критический анализ именно уравнений (1) с целью
поиска новых (скрытых) реалий в их физическом содержании. Несмотря на весьма малую
вероятность успеха в поиске, такие реалии в уравнениях (1) действительно были
обнаружены [3], а их суть заключена в соотношениях первичной взаимосвязи ЭМ
поля с компонентами электрической и магнитной напряженности и поля ЭМ векторного потенциала
с электрической и
магнитной компонентами:
(a) , (b) , (5)
(c) , (d) .
Соотношение (5a) вводится с помощью уравнения (1d), поскольку дивергенция ротора
произвольного векторного поля тождественно равна нулю. Соответственно, (5b) следует из уравнения (1b) при , справедливого для сред с локальной
электронейтральностью. Далее подстановка (5a) в (1а) дает (5c), а подстановка (5b) в (1c) с учетом закона Ома приводит к (5d). Здесь три представленных
соотношения достаточно известны [1], а соотношение (5d), по-видимому, просто не
сочли достойным должного внимания.
Однако объединение полученных четырех соотношений в
систему (5) оказалось весьма конструктивным, поскольку в этом случае возникает
система дифференциальных уравнений, описывающих значительно более сложное и
необычное с точки зрения общепринятых воззрений вихревое векторное поле,
состоящее из совокупности функционально связанных между собой четырех полевых
компонент , и , , которое физически логично назвать реальным
электромагнитным полем.
Объективность
существования указанного четырехкомпонентного вихревого поля иллюстрируется
нетривиальными следствиями из полученных выше соотношений, поскольку
подстановки (5c) в (5b) и (5d) в (5a) приводят к системе новых
электродинамических уравнений, структурно аналогичной системе традиционных
уравнений Максвелла (1), но уже для поля ЭМ векторного потенциала с
электрической и
магнитной компонентами:
(a) , (b) , (6)
(c) , (d) .
Чисто вихревой
характер компонент поля векторного потенциала обеспечивается условием
кулоновской калибровки посредством дивергентных уравнений (6b) и (6d), которые при этом представляют собой начальные условия в
математической задаче Коши для уравнений (6a) и (6c), что делает эту систему
уравнений замкнутой.
Соответственно,
математические операции с соотношениями (5) позволяют получить [3] еще две
других системы уравнений:
для электрического
поля с компонентами и
(a) , (b) , (7)
(c) , (d) ,
и для магнитного
поля с компонентами и
:
(a) , (b) , (8)
(c) , (d) .
Кстати, если
считать соотношения (5) исходными, то из них подобным образом следуют и
уравнения системы (1), справедливые для локально электронейтральных сред (). Таким образом, уравнения
системы (5) первичной взаимосвязи компонент ЭМ поля и поля ЭМ векторного
потенциала, безусловно, фундаментальны.
Далее, как и должно быть, из этих систем электродинамических уравнений
непосредственно следуют (аналогично выводу формулы (2)) соотношения баланса:
судя по
размерности, для потока момента ЭМ импульса из уравнений (6)
(9)
для потока
электрической энергии из уравнений (7)
(10)
и для потока магнитной энергии из уравнений (8)
.
(11)
Это еще раз подтверждает и аргументированно доказывает,
что, наряду с ЭМ полем с векторными компонентами и , в Природе существуют и другие поля: поле
ЭМ векторного потенциала с компонентами и , электрическое поле с компонентами
и , магнитное поле с и . Следовательно, структура
конкретного электродинамического поля из двух векторных взаимно ортогональных полевых
компонент реализует способ его объективного существования, делает принципиально
возможным его перемещение в пространстве в виде потока соответствующей
физической величины.
Фундаментальность
системы уравнений (5) первичной взаимосвязи ЭМ поля и поля векторного
потенциала подтверждают также результаты последовательного анализа их физического
содержания с целью выяснения возможной корпускулярно-полевой связи этих
макроскопических уравнений с параметрами микрочастицы [4]. Показано, что поле ЭМ
векторного потенциала как физическая величина представляет собой полевой
эквивалент локальных характеристик микрочастицы: ее электрическому заряду,
кратному кванту электрического потока - заряду электрона |e-|,
соответствует электрическая компонента векторного потенциала , а удельному (на единицу
заряда) кинетическому моменту, кратному кванту магнитного потока , отвечает магнитная
компонента векторного потенциала . Полученные в [4] результаты представляют
общефизический интерес и требуют дальнейшего весьма серьезного развития, в
частности, могут служить непосредственным введением в новую перспективную
область исследований неразрывной связи классических электродинамических полей с
микромиром.
Можно убедиться,
следуя логике рассуждений вывода волнового уравнения для поля электрической
напряженности ,
что форма и структура представленных систем уравнений (1), (6)-(8) говорят о
существовании волновых решений для всех четырех компонент реального
электромагнитного поля. Тем самым описываются волны конкретных вышеперечисленных
двухкомпонентных полей посредством одной из парных комбинаций четырех указанных
волновых уравнений. В итоге возникает физически очевидный вопрос: что это за
волны, и каковы характеристики их распространения?
Поскольку
структурная симметрия уравнений систем (1) и (6) математически тождественна, а
волновые решения уравнений (1) выше нами уже проанализированы, то далее анализ
условий распространения плоских электродинамических волн в однородных изотропных
материальных средах проведем, прежде всего, для уравнений систем (7) и (8). Их
необычные структуры между собой также тождественны, а волновые решения
уравнений практически неизвестны.
Итак, рассмотрим
волновой пакет плоской линейно поляризованной электрической волны с
компонентами и для системы (7) либо магнитной
волны с компонентами и для системы (8), которые представим
комплексными спектральными интегралами. Тогда, проводя аналогичные рассуждения,
как и для рассматриваемого выше пакета плоской ЭМ волны, получим соотношения
для волн электрического поля и . Соответственно, для волн магнитного поля
и . Таким образом, для обеих
систем электродинамических уравнений (7) и (8) имеем общее для них выражение: .
В конкретном
случае среды идеального диэлектрика () из с учетом формулы следует обычное дисперсионное
соотношение [1],
описывающее однородные плоские волны электрического или магнитного полей. При
этом связь комплексных амплитуд компонент указанных волновых полей имеет
специфический вид:
и .
Специфика состоит
в том, что при распространении в диэлектрической среде компоненты поля сдвинуты
между собой по фазе на .
Конечно, данный результат математически тривиален, поскольку компоненты ЭМ поля
и поля ЭМ векторного потенциала связаны между собой посредством производной по
времени (см. соотношения (5)). Однако концептуально, с физической точки зрения
данный факт весьма примечателен.
Справедливости ради уместно сказать, что впервые о
реальности магнитной поперечной волны с двумя ее компонентами и , сдвинутыми при распространении по
фазе колебаний на ,
почти 30 лет назад официально в виде приоритета на открытие заявил Докторович [5],
и данный факт он с удивительным упорством, достойным лучшего применения, безуспешно
пытается донести до других все эти годы. Печально, но только Время – высший судия,
и именно оно расставит всех по своим местам!
Полностью
аналогичные рассуждения для пакета плоской волны векторного потенциала с
компонентами и в системе (6) дают и , откуда снова получаем известное
выражение А
потому для среды идеального диэлектрика () дисперсионное соотношение для уравнений (6)
есть при
комплексных амплитудах в волновых решениях этой системы: , где сами решения описывают плоские
однородные волны, компоненты поля которых, как и в случае ЭМ волн, синфазно распространяются
в пространстве.
Как видим, именно уравнения поля ЭМ векторного
потенциала (6) описывают волны, переносящие в пространстве поток момента
импульса, которые со времен Пойнтинга безуспешно пытаются описать с помощью
уравнений ЭМ поля (1) (см. анализ в [6]). В этой связи укажем на пионерские
работы [7], где обсуждается неэнергетическое (информационное) взаимодействие
векторного потенциала со средой при передаче в ней потенциальных волн и их
детектирование с помощью эффекта, аналогичного эффекту Ааронова-Бома.
Согласно
соотношениям (5), синфазные между собой компоненты волны поля ЭМ векторного
потенциала имеют сдвиг по фазе колебаний на относительно также синфазных между собой
компонент волны ЭМ поля, тем самым, приводя к вышеуказанной специфике в
поведении компонент полей электрической и магнитной волн. Система соотношений (5)
иллюстрирует также другой непреложный факт, что существование и распространение
поля ЭМ векторного потенциала невозможно без сопутствующего ему ЭМ поля,
причем, как установлено выше, перенос синфазными компонентами указанных полей
потока соответствующей физической величины посредством обычного волнового
процесса принципиально невозможен, он реализуется опосредованно в виде так
называемых псевдоволн.
Для проводящей
среды в асимптотике металлов (), как показал анализ [8], распространение
волн всех четырех электродинамических составляющих реального электромагнитного
поля подчиняется теоретически хорошо изученному закону для плоских волн ЭМ
поля в металлах [1], где все волновые решения имеют вид экспоненциально затухающих
в пространстве плоских волн со сдвигом фазы между компонентами на .
Однако вернемся к
анализу энергетики распространения составляющих реального электромагнитного
поля в виде плоских волн в однородной диэлектрической среде без потерь (). Вначале обратимся к закону
сохранения электрической энергии, соотношение которого согласно (10)
запишется как:
. (12)
Выясним,
выполняется ли это выражение для плоской монохроматической электрической
волны, полевые компоненты которой, согласно волновым решениям уравнений системы
(7), обладая сдвигом фазы на , имеют следующий вид: и . Тогда, подставляя их в соотношение (12),
приходим к соотношению:
.
Такой результат
вполне удовлетворяет закону сохранения электрической энергии, поскольку
усреднение по времени этого соотношения дает
. (13)
Итак, в случае электрического
поля мы приходим к физически разумному результату, когда посредством электрической
волны переносится чисто электрическая энергия , в рассматриваемом случае не
зависящая от времени и точек пространства. Таким образом, распространение электрической
волны, как и следовало ожидать, отвечает логике наших рассуждений и
действительно удовлетворяет закону сохранения энергии.
Соответственно,
для магнитного поля, распространяющегося в однородной среде без потерь, закон
сохранения магнитной энергии согласно (11) запишется в виде
соотношения:
. (14)
Рассмотрим, как
выполняется этот закон для плоской монохроматической магнитной волны,
полевые компоненты которой, согласно волновым решениям уравнений (8), имеют
следующий вид: и
. Подставляя их
в соотношение (14) и проводя аналогичные рассуждения как при выводе формулы (13),
получаем в итоге:
. (15)
Итак, в случае магнитного
поля снова приходим к физически здравому результату, когда в пространстве
без потерь посредством магнитной волны переносится чисто магнитная
энергия , не
зависящая от времени и точек пространства. Следовательно, распространение магнитной
волны также удовлетворяет закону сохранения энергии.
Таким образом,
аргументированно установлено, что в Природе объективно существует сравнительно
сложное и необычное с точки зрения современных представлений вихревое
четырехвекторное поле в виде совокупности функционально связанных между
собой четырех полевых компонент , и , . Это поле, условно названное реальным электромагнитным
полем, реализуется четверкой составляющих его электродинамических полей,
состоящих из пар вышеуказанных компонент: электрическое поле с и , магнитное поле с и , электромагнитное поле
с и , наконец, поле векторного
потенциала с и
. Однако
способностью к непосредственному распространению в пространстве в виде волн,
отвечающих обычным физическим представлениям о волновом процессе, обладают
только электрическое и магнитное поля за счет наличия у этих волн сдвига
фазы на между их
компонентами и , соответственно, и . Реализация же собственно волн
ЭМ поля и ЭМ векторного потенциала невозможна в принципе, хотя сами эти
поля, как показано выше, существуют и распространяются опосредованно в виде псевдоволн,
поскольку их синфазные компоненты являются составной частью компонент электрической
и магнитной волн, распространяющихся обычным образом.
Тем самым все
составляющие реального электромагнитного поля объективно перемещаются
в пространстве совместно в виде единого волнового процесса, при котором переносятся
электрическая энергия, магнитная энергия, ЭМ энергия на
единицу частоты и момент ЭМ импульса. Важно понимать, что с
концептуальной точки зрения разделение реального электромагнитного поля
на составляющие его поля весьма условно и является переходным во времени,
поскольку это в определенной мере диктуется общепринятыми физическими
представлениями и современной практикой аналитического описания явлений
электромагнетизма.
К сожалению, в
настоящее время существующими методами регистрации электродинамических полей
реально можно наблюдать только псевдоволны “обычного” ЭМ поля,
компоненты и которых синфазно
распространяются в пространстве. И хотя реальное наблюдение волн остальных
обсуждаемых здесь полей – дело будущего, объективность их существования и
неоспоримая практическая значимость достоверно подтверждается принципиальной
невозможностью реализации без их посредства целого ряда физических
характеристик ЭМ поля, в частности, способности переноса ЭМ энергии. Как видим,
застарелый парадокс в механизме существования синфазных волн ЭМ поля и их
способности переноса энергии этого поля, наконец, успешно и весьма кардинально
разрешен, а результаты проведенных исследований представляют собой серьезную
концептуальную модернизацию основных физических воззрений на структуру и
свойства ЭМ поля в классической электродинамике.
Литература
1. Матвеев
А.Н. Электродинамика. М.: Высшая школа, 1980.
2. Пирогов
А.А. // Электросвязь. 1993. №5. С. 13-14.
3. Сидоренков В.В. // Вестник МГТУ им. Н.Э.
Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37; // Материалы IX
Международной конференции «Физика в системе современного образования».
Санкт-Петербург: РГПУ, 2007. Секция “Профессиональное физическое образование”.
С. 127-129; // Вестник Воронежского государственного технического университета.
2007. Т. 3. № 11. С. 75-82.
4. Сидоренков В.В. // #"#">#"#">http://revolution.allbest.ru/physics/00036062.html
.
|