|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Задание следует решить с помощью ППП MS EXCEL или любого другого статистического пакета прикладных программ. Задание. 1. Постройте матрицу парных коэффициентов корреляции. Установите какие факторы мультиколлинеарны. 2. Постройте уравнение множественной регрессии в линейной форме с полным набором факторов. 3. Оцените статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. 4. Отберите информативные факторы по пунктам 1 и 3. Постройте уравнение регрессии со статистически значимыми факторами. 5. Оцените полученные результаты, выводы оформите в аналитической записке. Решение. Для проведения корреляционного анализа воспользуемся программой «Excel»: 1) загрузить среду Excel ; 2) выделить рабочее поле таблицы; 3) выбрать пункт меню «Сервис» и в появившемся меню выбрать «Анализ данных» (рис. 1); Рис. 1 Меню «Сервис».
4) в появившемся диалоговом окне «Анализ данных» (рис. 2) выбрать «Корреляция; Рис. 2. Диалоговое окно «Анализ данных».
5) в появившемся диалоговом окне «Корреляция» (рис. 3) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»; Рис. 3. Диалоговое окно «Корреляция». В результате получим: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Х1 |
Х2 |
Х3 |
У |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Х1 |
1 |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Х2 |
-0,03376 |
1 |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Х3 |
0,098684 |
0,033191 |
1 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
У |
0,26943 |
-0,13538 |
0,312057 |
1 |
Анализ полученных коэффициентов парной корреляции показывает, что зависимая переменная, т.е. бонитировочный балл имеет слабую прямую связь со всеми независимыми переменными, т.к. значения коэффициентов парной корреляции ниже 0,4.
Мультиколлинеарность отсутствует
2.Для проведения регрессионного анализа, также используем Excel.
1) загрузить среду Excel ;
2) выделить рабочее поле таблицы;
3) выбрать пункт меню «Сервис» и в появившемся меню выбрать «Анализ данных» (рис. 4);
Рис. 4. Меню «Сервис».
4) в появившемся диалоговом окне «Анализ данных» (рис. 5) выбрать «Регрессия»;
Рис. 5. Диалоговое окно «Анализ данных».
5) в появившемся диалоговом окне «Регрессия» (рис. 6) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»;
Рис. 6. Диалоговое окно «Регрессия».
В результате получим:
ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R
0,416713
R-квадрат
0,17365
Нормированный R-квадрат
0,09368
Стандартная ошибка
7,58219
Наблюдения
35
Дисперсионный анализ
df
SS
MS
F
Значимость F
Регрессия
3
374,508
124,836
2,171453
0,111346483
Остаток
31
1782,178
57,4896
Итого
34
2156,686
Коэффициенты
Стандартная ошибка
t-статистика
P-Значение
Нижние 95%
Верхние 95%
Нижние 95,0%
Верхние 95,0%
Y-пересечение
56,84826
10,01268
5,677626
3,08E-06
36,42724917
77,26927
36,42725
77,26927
Х1
0,440965
0,306967
1,436523
0,16087
-0,185098139
1,067027
-0,1851
1,067027
Х2
-0,11314
0,13485
-0,83899
0,407899
-0,388166847
0,161891
-0,38817
0,161891
Х3
0,104629
0,058561
1,786669
0,083775
-0,014806871
0,224065
-0,01481
0,224065
Уравнение регрессии полученное с помощью Excel, имеет вид:
3. По данным проведенного корреляционного и регрессионного анализа оценим статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.
Общий F-критерий проверяет гипотезу о статистической значимости уравнения регрессии. Анализ выполняется при сравнении фактического и табличного значения F-критерия Фишера.
Частные F-критерии оценивают статистическую значимость присутствия факторов в уравнении регрессии, оценивают целесообразность включения в уравнение одного фактора после другого.
t-критерий проверяет гипотезу о статистической значимости факторов уравнения регрессии.
4. Согласно проведенному анализу информативными факторами являются х1 и х2, а также коэффициенты b1 и b2. Следовательно уравнение регрессии со статистически значимыми факторами будет иметь вид:
5. Аналитическая записка.
По результатам проведенного корреляционного анализа можно сказать, что межфакторная связь слабая, т.к. значения коэффициентов парной корреляции не превышают значения 0,4, хотя можно сказать, что наибольшая связь результативного признака с и .
Мультиколлинеарность отсутствует, т.к. ни одно значение коэффициентов не превышает 0,7.
Фактическое значение F-критерия Фишера меньше табличного, следовательно можно сказать, что полученное уравнение регрессии статистически незначимо.
По полученным значениям частных F-критериев Фишера, можно сказать, что включение фактора х2 после х3 оказался статистически незначимым: прирост факторной дисперсии (в расчете на одну степень свободы) оказался несущественным. Следовательно, регрессионная модель зависимости бонитировочного балла от количества минеральных удобрений, внесенных в почву и запасов влаги в почве является достаточно статистически значимой и что нет необходимости улучшать ее, включая дополнительный фактор х2 (коэффициент износа основных средств).
Это предположение подтверждает оценка с помощью t-критерия Стьюдента значимости коэффициентов. По результатам этой оценки:
т.е. можно сказать, что b2 и b3 статистически незначимы.
В совокупности с результатами F-статистики, делаем вывод, что из уравнения регрессии можно исключить х2 и b2.
В таблице приведены данные по природно-экономической зоне за 15 лет об урожайности многолетних трав на сено У, внесении удобрений на 1 га пашни Х1 и осадках за май-июнь месяцы Х2.
номер года
у
х1
х2
1
13,6
161
360
2
14,1
170
223
3
13,2
188
144
4
18,6
209
324
5
16,9
240
227
6
21
334
212
7
22,2
377
230
8
29,6
399
204
9
31,3
404
156
10
32,1
451
200
11
26,7
501
163
12
32,8
538
315
13
31,4
579
280
14
31
600
251
15
26,1
614
386
Задание следует выполнить с помощью ППП MS EXCEL или любого статистического пакета прикладных программ.
Задание.
Необходимо проанализировать степень зависимости урожайности У от факторов Х1 и Х2, для этого:
1. Определить для каждого ряда данных У, Х1, Х2 первые разности (абсолютные приросты).
2. Рассчитать параметры двухфакторного линейного уравнения регрессии по первым разностям (по абсолютным приростам) и дать их интерпретацию. Охарактеризовать тесноту связи между рядами.
3. Оценить полученные результаты, выводы оформить в виде аналитической записки.
Решение.
1. Значения абсолютных приростов определяются по формулам:
Расчеты можно оформить в виде таблицы:
Номер года
1
2
0,5
9
-137
3
-0,9
18
-79
4
5,4
21
180
5
-1,7
31
-97
6
4,1
94
-15
7
1,2
43
18
8
7,4
22
-26
9
1,7
5
-48
10
0,8
47
44
11
-5,4
50
-37
12
6,1
37
152
13
-1,4
41
-35
14
-0,4
21
-29
15
-4,9
14
135
2. Для проведения корреляционного анализа воспользуемся программой «Excel»:
1) загрузить среду Excel ;
2) выделить рабочее поле таблицы;
3) выбрать пункт меню «Сервис» и в появившемся меню выбрать «Анализ данных» (рис. 7);
Рис. 7 Меню «Сервис».
4) в появившемся диалоговом окне «Анализ данных» (рис. 8) выбрать «Корреляция;
Рис. 8. Диалоговое окно «Анализ данных».
5) в появившемся диалоговом окне «Корреляция» (рис. 9) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»;
Рис. 9. Диалоговое окно «Корреляция».
В результате получим:
1
0,849962
1
0,154498
0,381125
1
Анализ полученных коэффициентов парной корреляции показывает, что зависимая переменная, т.е. урожайность имеет слабую прямую связь с количеством осадков ( ) и сильную прямую связь с величиной внесения минеральных удобрений (
Мультиколлинеарность отсутствует, т.к. коэффициент парной корреляции , что не превышает значения 0,7-0,8.
2.Для проведения регрессионного анализа, также используем Excel.
1) загрузить среду Excel ;
2) выделить рабочее поле таблицы;
3) выбрать пункт меню «Сервис» и в появившемся меню выбрать «Анализ данных» (рис. 10);
Рис. 10. Меню «Сервис».
4) в появившемся диалоговом окне «Анализ данных» (рис. 11) выбрать «Регрессия»;
Рис. 11. Диалоговое окно «Анализ данных».
5) в появившемся диалоговом окне «Регрессия» (рис. 12) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»;
Рис. 12. Диалоговое окно «Регрессия».
В результате получим:
ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R
0,869497573
R-квадрат
0,756026029
Нормированный R-квадрат
0,711667125
Стандартная ошибка
3,770480303
Наблюдения
14
Дисперсионный анализ
df
SS
MS
F
Значимость F
Регрессия
2
484,595404
242,297702
17,04338845
0,000426962
Остаток
11
156,3817388
14,21652171
Итого
13
640,9771429
Коэффициенты
Стандартная ошибка
t-статистика
P-Значение
Нижние 95%
Верхние 95%
Нижние 95,0%
Верхние 95,0%
Y-пересечение
-1,295421622
3,285114475
-0,39433074
0,700874404
-8,525913487
5,935070243
-8,525913487
5,935070243
Переменная X 1
0,04178195
0,00727214
5,745482249
0,000129227
0,02577607
0,05778783
0,02577607
0,05778783
Переменная X 2
-0,020154418
0,016377196
-1,230639128
0,244124417
-0,056200401
0,015891565
-0,056200401
0,015891565
Уравнение регрессии полученное с помощью Excel, имеет вид:
3. Аналитическая записка.
По данным регрессионного анализа можно сказать:
- т.к. коэффициент детерминации равен 0,756, то вариация результата на 75,6% объясняется вариацией факторов.
- F-критерий равен 17,043, его табличное значение 3,98. т.к. фактическое значение превышает табличное, то делаем вывод, что полученной уравнение регрессии статистически значимо.
1. Федеральный закон «О бухгалтерском учете» от 21.11.96 г., № 129-ФЗ. – М., 1996.
2. Концепция бухгалтерского учета в рыночной экономике России. Одобрена Методологическим советом по бухгалтерскому учету при Министерстве финансов РФ и Президентским советом Института профессиональных бухгалтеров 29.12.97 г. – М., 1997.
3. План счетов бухгалтерского учета финансово-хозяйственной деятельности организаций и инструкция по его применению. Утверждены приказом Минфина РФ от 31.10.2000 г. № 94н.
4. Абрютина М.С. Грачев А.В. Анализ финансово-хозяйственной деятельности предприятия. – М.: Финансы и статистика, 2002. – 428 с.
5. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем. – М.: Финансы и статистика, 2003. – 368 с.
6. Вакуленко Т.Г., Фомина Л.Ф. Анализ бухгалтерской (финансовой) отчетности для принятия управленческих решений. – СПб.: «Издательский дом Герда», 2003. – 288 с.
7. Вендров А.М. Проектирование программного обеспечения экономических информационных систем. - М.: Финансы и статистика, 2000. – 352 с.
8. Доугерти К. Введение в эконометрику. – М.: ИНФРА-М, 2001.-402 с.
9. Елисеева И.И. Эконометрика. – М.: «Финансы и статистика», 2004 г. – 344 с.
10. Елисеева И.И. Практикум по эконометрике. – М.: «Финансы и статистика», 2004 г. – 192 с.
11. Ефимова О.В. Финансовый анализ. – М.: Финансы и статистика, 2002. – 656 с.
12. Колемаев В.А. Математические методы принятия решений в экономике. - М.: ЗАО «Финстатинформ», 1999. – 386 с.
ОпросыКто на сайте?Сейчас на сайте находятся:345 гостей |
Все права защищены © 2010 |