Воздействие радиационного излучения на операционные усилители
Воздействие радиационного излучения на операционные усилители
14
И. САМКОВ
Научный руководитель проф. Т.М. АГАХАНЯН
Московский государственный инженерно-физический институт (технический университет)
Обзор по теме
“Воздействие ионизирующего излучения на ИОУ. Схемотехнические способы повышения радиационной стойкости ИОУ при воздействии импульсного ионизирующего излучения ”
2006
СОДЕРЖАНИЕ
1.Основные радиационные эффекты в элементах интегральных микросхем.
1.1. Классификация радиационных эффектов.
1.2. Действие облучения на биполярные транзисторы
1.3. Действие облучения на униполярные транзисторы
1.4. Специфика эффектов в зависимости от конструктивно-технологических особенностей ИМС
|
3
|
|
2. Радиационные эффекты в усилительных и дифференциальных каскадах
2.1. Усилительные каскады.
2.2. Дифференциальные каскады.
2.2.1. Моделирование эффектов в дифф-каскадах.
2.2.2. Влияние ИИ на шумовые характеристики.
|
5
|
|
3. Радиационные эффекты в ИОУ
3.1. Воздействие ИИ на параметры ИОУ.
3.2. Критериальные параметры.
3.3. Проектирование радиационно-стойких ИОУ.
3.4. Прогнозирование эффектов воздействия ИИИ на ИОУ.
3.5. Имитационные испытания.
3.6. Уменьшение ВПР электронной аппаратуры.
|
8
|
|
5. Список использованной литературы.
|
15
|
|
|
Основные радиационные эффекты в элементах аналоговых интегральных микросхем.
Классификация радиационных эффектов.
Воздействие ионизирующих излучений (ИИ) на какое-либо вещество сопровождается выделением энергии частицей ИИ. Дальнейшая релаксация полученной энергии и распределение её по объёму вещества происходят в форме различных радиационных эффектов. Принято выделять два вида основных эффектов: смещения (обусловленные смещением атомов из своего нормального положения) и ионизации (связаны с образованием свободных носителей заряда под действием ИИ).
Реакция интегральных микросхем (ИМС) на ионизирующее излучение обусловлена, в первую очередь, зависимостью параметров её элементов от эффектов смещения и ионизации. В свою очередь, конкретный вид энерговыделения (однородное, равновесное и т.п.) может приво-дить к появлению различных эффектов в микросхеме, особенно-сти проявления которых определяются специфическими для нее технологическими и схемотехническими решениями. По причине возникновения эти эффекты можно подразделить на первичные - обусловленные непосредственно энергией излучения, поглощен-ной в ИМС (дефекты смещения, модуляция проводимости и т.п.), и вторичные - обязанные своим происхождением инициирован-ному излучением перераспределению энергии внутренних и сто-ронних источников (радиационное защелкивание, вторичный фо-тотек, пробой и т.п.).
С точки зрения функционирования ИМС в аппаратуре в зависимости от соотношения между длительностью воздействия излучения Ти и временем релаксации вызванного им возбуждения в системе Трел разли-чают остаточные (долговременные Трел>>Ти) и переходные (кратковременные Ти>Трел) изменения параметров приборов.
Одним из основных параметров, характеризующих переход-ные ионизационные эффекты в элементах ИМС при равновесном энерговыделении, является величина ионизационного тока р-n-переходов, который можно представить в виде двух составляю-щих: 1)мгновенная составляющая, связанная с дрейфом избыточных носителей из обедненной области перехода;
2)запаздывающая составляющая, связанная с диффузией и дрейфом неравновесных носителей заряда из областей, прилегающих к обедненной области р-n-перехода. Соотношение амплитуд запаздывающей и мгновенной со-ставляющих определяется параметрами р-n -перехода.
Долговременные изменения параметров транзисторов обу-словлены эффектами смещения и ионизации.
Эффекты смеще-ния, связанные с изменением кристаллической структуры полу-проводника вследствие перемещения атомов из своего положе-ния, вызывают изменение электрофизических свойств полупро-водника: времени жизни, подвижности носителей заряда и их концентрации. Соответственно изменяются и параметры транзи-сторов, определяемые указанными величинами.
Эффекты ионизации, связанные с накоплением заряда в ди-электрических слоях и изменением плотности поверхностных состояний при ионизации полупроводника, также приводят к де-градации параметров транзисторов.
Действие облучения на транзисторы удобно установить на основании его физических параметров, характеризующих про-цессы в транзисторной структуре.
Действие облучения на биполярные транзисторы.
Физические параметры биполярного транзистора можно разбить на четыре группы:
1)Параметры, характеризующие диффузию и дрейф неосновных носителей,
2)Параметры, характери-зующие рекомбинацию и генерацию,
3)Параметры, определяющие изменение пространственного заряда в области p-n- переходов и его влияние на характеристики транзисторов (это зарядные емкости коллекторного и эмиттерного переходов, а также емкость изолирующих p-n-переходов)
4)Параметры, характеризующие падение напряжения в объеме полупроводника и включающие объемные сопротивления эмиттера, базы и коллектора, а при высоких уровнях инжекции также диффузионное падение напряжения (ЭДС Дембера).
Ионизирующие излучения влияют на все физические параметры транзи-стора, однако перечень параметров, подлежащих учету, зависит от конкретных условий применения.
Действие облучения на униполярные транзисторы.
Влияние ионизирующего излу-чения на параметры униполярных транзисторов как с управляющим p-n-переходом, так и МДП - структур в основном проявля-ется в виде изменений тока затвора I3, порогового напряжения Uзи.пор (для МДП - транзисторов с индуцированным каналом) или напряжения отсечки Uзи.отс (для транзисторов с управляющим р-п-переходом и со встроенным каналом) и крутизны характеристики транзистора Sст. Претерпевают изменение также дифференциаль-ные параметры: сопротивление затвора rз, внутреннее сопротив-ление транзистора ri.
В отличие от биполярных транзисторов в униполярных тран-зисторах ток в канале образуется потоком основных носителей, поэтому заметные изменения характеристик униполярных тран-зисторов, обусловленные действием эффектов смещения, наблю-даются при уровнях облучения, способных существенно повли-ять на подвижность основных носителей и их концентрацию. Для кремниевых ИМС при облучении нейтронами это происходит при флюенсах, превышающих 1015-1016 нейтр./см2. Вместе с тем приповерхностный характер происходящих в МДП-транзисторах процессов обусловливает их сильную чувствительность к иони-зационным эффектам, действие которых, прежде всего, свя-зано с накоплением положительного пространственного заряда в слое подзатворного диэлектрика, модулирующего проводимость канала МДП-транзистора.
Специфика эффектов в зависимости от конструктивно-технологических особенностей ИМС.
Специфика проявления радиаци-онных эффектов во многом определяется конструктивно-технологическими особенностями ИМС и в некоторых случаях различается для схем низкой и высо-кой степени интеграции. В частности, для интегральных структур малой и средней степени интеграции, к числу которых относятся аналоговые ИМС, можно пренебречь неравновесностью энерго-выделения, более слабо проявляются дозовые эффекты в бипо-лярных структурах и т.п.
Уменьшение размеров структур в условиях радиационного воздействия также приводит к принципиальным изменениям физики работы приборов. Эти изменения связаны с тем, что: 1) характерные пространственные масштабы изменения электрического поля сопоставимы с длинами релаксации энергии и импульса электронов и длиной свободного пробега электронов; 2) характерные размеры рабочих областей приборов сравнимы с расстоянием между кластерами радиационных дефектов (КРД); 3) характерные размеры рабочих областей приборов сопоставимы с размерами КРД; 4) ионизирующее излучение разогревает электронный газ, который не успевает остывать за времена пролета рабочей области приборов; 5) при облучении нейтронами происходит перестройка протонированных изолирующих областей ИС, что сказывается на процессах протекания тока и фоточувствительности; 6) взаимодействие ионизирующих излучений (особенно лазерных) с нанометровыми металлическими объектами имеет особенности; 7) радиационные технологические процессы (например, геттерирование) существенно изменяют электрофизические характеристики полупроводника, что заметным образом сказывается на процессах формирования радиационных дефектов в субмикронных приборах; 8) электроны, разогнанные до энергий 0,5...1 эВ большими электрическими полями (~ 100 кВ/см) в субмикронных приборах, могут проникать сквозь КРД, что принципиально меняет подход к моделированию радиационной стойкости приборов.
Радиационные эффекты в усилительных и дифференциальных каскадах.
Усилительные каскады.
В качестве простейших усилитель-ных каскадов применяют каскады с общим эмиттером (ОЭ) и общим истоком (ОИ). Отклонение тока коллектора ДIк от своей номинальной величины, обусловленное действие стационарных эффектов смещения и ионизации, можно уменьшить увеличением глубины обратной связи, что приводит к уменьшению как коэф-фициента нестабильности, так и чувствительности схемы.
Усилительные параметры каскада ОЭ: его коэффициент уси-ления по напряжению входное и выходное сопротивление изме-няются главным образом из-за уменьшения коэффициента пере-дачи тока базы N. Высокочастотные параметры каскада ОЭ при облучении улучшаются из-за уменьшения , и Ск.
В каскаде ОИ отклонение тока стока ДIк от своей номиналь-ной величины, вызываемое радиационными эффектами, опреде-ляется изменением смещения на затворе, сдвигом напряжения отсечки и изменением статической крутизны характеристики.
Усилительные характеристики каскада ОИ изменяются из-за изменений крутизны характеристики транзистора S, его входного и выходного сопротивлений. Постоянные времени
вх СвхRг ; вsх Сн.выхRсн
характеризующие высокочастотные свойства каскада ОИ, могут изменяться, если наблюдается заметное изменение паразитных емкостей Свх и Сн.вых которые складываются из межэлектродных емкостей транзистора, емкостей монтажных площадок и емкости нагрузки.
Дифференциальные каскады.
Принято считать, что стойкость аналоговых интегральных микросхем к спецвоздействиям оп-ределяется, прежде всего, радиационными эф-фектами во входных каскадах, в качестве кото-рых, как правило, применяют дифференциаль-ные каскады (за исключением трансимпедансных ИОУ). В дифференциальном каскаде приведенное ко входу откло-нение выходного напряжения от своей номинальной величины, вызываемое действием эффектов смещения и ионизации, опреде-ляется формулой
(где Kвл.ип коэффициент влияния нестабиль-ности напряжений источников питания, обусловленных радиаци-онными эффектами)
Представленное соотношение применимо для диффе-ренциальных каскадов, включенных в аналоговые ИМС с изоля-цией диэлектрической пленкой. В ИМС с изоляцией р-п-переходом в ряде случаев требуется учет паразитного р-п-р-транзистора, образуемого базовым и коллекторным слоями рабо-чего транзистора и подложкой ИМС.
Благодаря высокому коэффициенту по-давления синфазных сигналов, образуемых пере-падами ионизационных токов как на входах, так и на выходах, разность выходных напряжений и входной ток сдвига из-меняются незначительно. Поэтому отклонение выходного напряжения от нуля определяется не входным дифференциальным каскадом, а реакцией последующих каскадов.
Существенно меняется входной ток смещения; это ток, который определяется не разностью токов, а их средним значени-ем, изменение которого определяется изменением N. Отклонение выходного напряжения происходит также из-за радиацион-ной нестабильности тока в эмиттерах.
В аналоговых ИМС с дифференциальным каскадом на входе в качестве пары используют униполярные транзисторы с управ-ляющим p-n-переходом. При этом токи затворов определяются токами обратносмещенных p-n-переходов -- затворов. Как из-вестно, МДП-транзисторы обладают меньшим входным током, чем транзисторы с управляющим p-n-переходом. Однако МДП-транзисторы очень чувствительны к импульсным помехам, по-этому при использовании их во входных каскадах требуется за-щита входов диодами, токи утечки которых сводят на нет пре-имущества МДП-транзисторов. Необходимость диодной защиты отпадает в ИМС с внутрисхемной связью входа аналоговой части схемы с предшествующими схемами. При этом использование МДП-транзисторов в качестве дифференциальной пары позволя-ет заметно уменьшить Iвхсм и Iвх.сд определяемые токами утечки диэлектрических затворов.
Действие переходных ионизационных эффек-тов можно оценить при помощи моделей диффе-ренциальных каскадов на биполярных транзис-торах (рис. 1а) и униполярных транзисторах с уп-равляющим p-n-переходом (рис. 16).
Рис. 1. Модели дифференциальных каскадов для анализа переходных ионизационных эффектов: (а) - на биполярных транзисторах; (б) - на униполярных транзисторах с управляющим p-n-переходом.
В этих схемах фототоки источников стабилизированного тока I0 непосредственно не учитываются, так как их дей-ствие подавляется (так же как действие всяких синфазных помех). Косвенное влияние этих фо-тотоков, приводящее к изменению тока I0 в эмит-терах или истоках транзисторных пар, удобно учитывать наряду с другими причинами измене-ния этого тока, представив, что при облучении
ток I0 изменяется в (1 + ф) раз (где ф - коэффи-циент изменения тока I0).
В модели на рис.1,а действие фототоков, об-разуемых потоком носителей через коллектор-ные переходы, которые генерируются в базах транзисторных пар Т1 и Т2, учитываются посред-ством источников тока Iфкп1 и Iфкп2 (влиянием фо-тотоков, образуемых потоком носителей через эмиттерные переходы Т1 и Т2, пренебрегаем). Фототоки, которые возникают в коллекторных слоях транзисторов Tl, T2 и прилегающих к ним областях подложки с изолирующими р-п-переходами, учитываются источниками токов, шунтиру-ющих коллекторные и эмиттерные переходы па-разитных транзисторов ТП1, ТП2 и источниками фототоков Iфип1, Iфип2. Для упрощения моделей аналогичные паразитные транзисторы, связан-ные диффузионными резисторами, не показаны.
В модели на рис.1,б учтены фототоки, возни-кающие в каналах транзисторов Tl, T2 и прилегающих к каналам слоях подложки и изолирующих р-n-переходах. Действие ионизирующих излуче-ний приводит к отклонению от нуля выходного напряжения дифференциального каскада.
Влияние ионизационных эффектов, вызывае-мых воздействием электронного, высокоэнерге-тического нейтронного и -излучений, проявля-ется прежде всего в виде заметного увеличения токов утечки и канальных токов, что приводит к росту входных токов смещения Iвх см и сдвига Iвх сд. Происходит также уменьшение коэффициента пе-редачи тока базы N, влияющее как на точностные характеристики каскада, так и на его усилитель-ные параметры. Может происходить заметное из-менение выходных потенциалов каскада вследст-вие роста тока I0 стабилизированного источника.
Анализ влияния поверхностных ионизацион-ных эффектов требует более подробной инфор-мации о топологических и технологических осо-бенностях изготовления элемента ИМС, а также об изменениях заряда в приповерхностных слоях. Для этого обычно используют тестовые структуры.
Как показывает анализ, приведенное к входу импульсное отклонение собственного выходного напряжения дифференциального каскада (а не всего ИОУ) от номинальной величины оказыва-ются не столь заметными, несмотря на сущест-венное увеличение входных токов ИОУ при им-пульсном воздействии.
В литературе отмечается, что отклонение вы-ходного напряжения ИОУ от нуля при спецвоз-действии обусловлено не изменением выходных потенциалов дифференциальных каскадов, а в ос-новном происходит из-за нарушения режима по постоянному току выходных повторителей, при-чем это отклонение имеет одну и ту же поляр-ность, т.е. выходное напряжение отклоняется в сторону положительного источника питания. Экс-периментально было проверено, действительно ли влияние фототоков в выходных повторителях яв-ляется определяющим.
Влияние ИИ на шумовые характеристики дифф-каскада.
В каскадах на биполярных транзисторах в области средних и высших частот шумо-вого спектра, где преобладают дробовой шум токораспределения iш.к и тепловой шум объемного сопротивления базы eш.б, при облучении уровень шумов возрастает в результате деградации коэффициента пере-дачи тока базы и увеличения объемных сопротивлений.
Влияние теплового шума сопро-тивления коллекторного слоя eшк, а также шумовых сигналов паразитного транзистора iшфи, iшfи не так существенно. В области низ-ших частот преобаладают шумы со спектром 1/f, а также низкочастотные шумы фототоков. Анализ низкочастотных шу-мов усложняется тем, что их изменение при облучении определяется не только объемными эффектами, но и поверхностными. Действие ионизирующих излучений приводит не тоолько к повышению уровня низкочастотных шумов, но также к увеличению граничной частоты fш, т.е. к сдвигу их спектральной плотности в область более высоких частот.
В дифференциальных каскадах на униполярных транзисторах в об-ласти средних и высших частот, где преобладают тепловой шум ка-нала iшс и дробовой шум тока затвора iш.з шумы при облучении воз-растают из-за уменьшения крутизны характеристики транзистора S и увеличения тока затвора вследствие роста тока генерации в управ-ляющем р-n-переходе. Возрастают также низкочастотные шумы, об-условленные флуктуациями заряда токов генерации--рекомбинации в обедненном слое изолирующего р-n-перехода. При этот относитель-ное увеличение шумового сопротивления практически не зависит от частоты.
Уровень собственных шумов каскада повышается из-за шумов фото-токов, особенно при высоких импедансах источника сигнала.
Уровень шумов дифференциального каскада зависит также от схе-мы подачи входного сигнала и съема выходного напряжения. На практи-ке нередко подают сигнал только на один из входов каскада По отношению к этому входу интенсивность первичного шумового на-пряжения возрастает.
Сравнение дифференциальных каскадов на биполярных и униполяр-ных транзисторах по их шумовым показателям в области средних час-тот показывает, что в первых из них при работе от источников с Rг >> 103 Ом уровень шума выше. Следует иметь в виду, что каскады на униполярных транзисторах менее критичны к выбору оптималь-ного сопротивления источника входного сигнала, а поэтому изме-нение условия оптимальности при облучении не приводит к дополни-тельному увеличению шума.
Радиационные эффекты в ИОУ.
Воздействие ИИ на параметры ИОУ.
Интегральные операционные усилители (ИОУ) представляют собой высококачественные прецизионные усилители, которые относятся к классу универсальных и многофункциональных аналоговых микро-схем. Радиационная стойкость аналоговых ИМС определяется не только влиянием ионизирующих излучений на характеристики элемен-тов микросхемы, но она зависит также от структуры ИМС и схемотехнических особенностей. Поскольку боль-шинство современных аналоговых ИМС построены по структуре ИОУ, то на их примере можно выяснить влияние радиационных эффектов на характеристики аналоговых микросхем.
Специализированные ИОУ частного применения, к числу ко-торых относятся микросхемы с повышенным входным сопротив-лением, прецизионные и микромощные ИОУ, быстродействую-щие усилители [11], обычно более чувствительны к остаточным радиационным эффектам, так как схемотехнические и технологи-ческие меры, применяемые для достижения предельных возмож-ностей по каким-либо параметрам, как правило, приводят к сни-жению их радиационной стойкости. Особенно чувствительны к воздействию облучения ИОУ при работе в микрорежиме. Это объясняется тем, что в микрорежиме деградация параметров транзисторов происходит при более низких флюенсах.
Причиной нарушения нормальной работы ИОУ являются также переходные ионизационные эффекты, обусловленные об-разованием мощных импульсов фототоков во всех областях кри-сталла, включая не только области, где формированы рабочие транзисторы, диодные структуры, диффузионные резисторы, но также изолирующие и приповерхностные слои ИМС. Изоляция р-n-переходами является серьезным недостатком ИОУ, работаю-щих в полях ионизирующих излучений. Воздействие г-излучения, электронного и высокоэнергетического нейтронного (Е„ > 14 МэВ) излучений приводит к образованию через изоли-рующие p-n-переходы мощных фототоков, которые могут быть причиной нарушения электрической изоляции р- и n-областей, возрастания рассеиваемой мощности, возникновения тиристорного эффекта, пробоя как в рабочих, так и в паразитных транзисто-рах. Значительный вклад в образование фототоков вносят участ-ки подложки, прилегающие к изолирующим p-n-переходам. По-этому эти токи можно заметно уменьшить легированием подложки с тыльной стороны золотом, уменьшающим время жизни но-сителей в подложке. Наиболее эффективным способом уменьше-ния фототоков является применение диэлектрической изоляции, а также использование пленочных резисторов вместо диффузион-ных.
Воздействие ионизирующего излучения сказывается также на частотных и импульсных характеристиках ИОУ в области ма-лых времен. При облучении, создающем объемные структурные повреждения, частота единичного усиления для некорректированного ИОУ меняется незначительно вплоть до флюенсов 1015 нейтр./см2 и более. Верхняя граничная частота для боль-шинства ИОУ возрастает, что объясняется уменьшением коэф-фициентов усиления каскадов, вследствие чего уменьшается влияние паразитных емкостей. Эти изменения приводят к сниже-нию запаса устойчивости, oднако поскольку в реальных условиях послед-няя тоже уменьшается, то в итоге при облучении самовозбужде-ние ИОУ маловероятно.
Критериальные параметры для оценки стойкости ОУ.
Как правило, нормативная документация (НД) на ИОУ устанавливает отклонение выходного на-пряжения от нуля ДUвх от, приведенного ко входу, в качестве критериального параметра при опреде-лении уровня бессбойной работы (УБР) и времени потери работоспособности (ВIIP) при воздействии импульсного ИИ.
Типовая схема включения по НД для контроля параметра ДUвх.от показана на рис.2, причем коэффициент усиления схемы Ки выбира-ется в диапазоне от 10 до 1000 без должного обос-нования. Напряжение отклонения от нуля рассчи-тывается по упрощенной формуле:
ДUвх.от = ДUвых/ Ku.
Критерий работоспособности ИОУ по пара-метру UBX для определения УБР и ВПР задается выражением
ДUвх.от ДUвх.от норм или ДUвых ДUвх.от нормKu
Как показали эксперименты, в зависимости от технологии существенно различаются чувствительность к воздействию стационарного ИИ того или иного параметра однотипных ОУ, различаются зависимость АЧХ от величины поглощенной дозы, уровень катастрофического отказа, характер изменения напряжения смещения нуля и др. Так, например, уровень катастрофического отказа ОУ 140УД17 различается на порядок в зависимости от предприятия изготовителя. В связи с этим один и тот же тип ОУ мог соответствовать либо нет нормам ТУ. Т.о. очевидна невозможность прогнозирования радиационного поведения ОУ по результатам исследования схем того же типа, но другого конструктивно-технологического исполнения. Более того, подтверждается неинформативность использования одного и того же критериального параметра для сравнительной оценки радиационной стойкости всех ОУ, т.к. критериальный параметр, т.е. наиболее чувствительный к воздействию того или иного типа ИИ, определяется технологией изготовления микросхемы.
Ниже приведена таблица параметров, реагирующих на воздействие ИИ для некоторых усилителей.
Марка ОУ
|
Параметры ОУ, подверженные радиации
|
|
OP 400
|
+Ib, -Ib, Gain_2k, Slew Rate
|
|
OP 467
|
+Ib, -Ib, Icc, Voh_2k
|
|
AD 620
|
+Ib, -Ib, PSRR_pos, +Swing, all of gain_errors
|
|
AD 845
|
Icc, P_PSRR_A, Vol
|
|
LF 147
|
None
|
|
LF 155a
|
+Ib, -Ib
|
|
LMC 6464
|
+Ib, -Ib, Ios, Voh_100k A-D, Vol_100k A-D, Slew Rate A-D, GBW A-D
|
|
OP 07 (0,14R(Si)/s)
|
VOS, P_IIB, N_IIB, IIOS, CMRR, P_AOL_2k, N_AOL_2k, Slew Rate
|
|
OP 07 (0,58R(Si)/s)
|
VOS, P_IIB, N_IIB, IIOS, CMRR, PSRR, VOUT, AOL, Slew Rate
|
|
OP 15
|
VOS, +Ibias, -Ibias, Iio
|
|
OP 27
|
VOS, P_IIB, N_IIB
|
|
OP 77
|
VOS_0V, P_IIB_0V, N_IIB_0V
|
|
OP 270
|
+Ib_A, -Ib_A, +Ib_B, -Ib_B, Ios_A, Ios_B, Open Loop Gain B
|
|
PA07M/883
|
Voffset
|
|
LM 10
|
VOS, P_IIB, N_IIB, IIOS, CMRR, PSRR, AOL, ASH, REF GAIN, V_FB,
I_FB, Line Reg, Load Reg
|
|
OP 07A
|
VOS_0V, P_IIB_0V, N_IIB_0V, P_AOL, N_AOL, IIOS_0V, CMRR,
+PSRR, -PSRR
|
|
AD 645
|
vio
|
|
|
Из представленного материала, подтверждае-мого многочисленными экспериментами, следует, что напряжение смещения нуля, определяемое как приведенное к входу выходное напряжение не яв-ляется информативным параметром при опреде-лении уровня бессбойной работы ИОУ при воз-действии импульсных спецфакторов. Более ин-формативным показателем стойкости ИОУ при воздействии ИИИ является время потери работоспособности (ВПР), определяемое по уменьшению отклонения выходного напряже-ния до заданного уровня.
Выбор общего критерия работоспособности для определения УБР и ВПР, отражающего спо-собность ИОУ усиливать сигнал с заданной точ-ностью, можно осуществить только условно без привязки к конкретному применению ИОУ. Пря-мая оценка по наихудшему случаю (например включение ИОУ без ОС) также неинформатив-на, так как при этом получаются заведомо завы-шенные значения ВПР. Однако предварительные оценки показывают, что в этом случае возможен пересчет полученных значений ВПР к конкрет-ной схеме включения.
Проектирование радиационно-стойких ИОУ.
На этапе проектирования проблему повыше-ния радиационной стойкости аппаратуры наибо-лее эффективно можно решить соответствую-щим выбором способа коррекции переходных и частотных характеристик усилителя. Наи-лучшие результаты получаются при включении быстродействующего канала (см.рис.3) параллельно наибо-лее инерционному каскаду интегрального операци-онного усилителя, а наихудшие результаты при коррекции интегрирующим конденсатором Скор, подключаемым между выходом и входом каскада промежуточного усилителя в микросхеме.
Рис.3. Аналоговое устройство на АИМС с параллельным бы-стродействующим каналом:
а - структурная схема;
б - схема замещения
Включение быстродействующего канала при определенных условиях существенно повышает быстродействие интегрального операционного усилителя и, соответственно, частоту единичного усиления f1ис. Это позволяет, используя низкочастотную микросхему с повышенной радиационной стойкостью, спроектировать быстродействую-щий усилитель, способный работать нормально при заметно большем уровне ионизирующего из-лучения. Этот способ коррекции одновременно позволяет на порядок и более сократить продол-жительность ВПР усилителя. Реализация этого способа коррекции возможно только у интегрального операционно-го усилителя с дополнительными выводами для подключения корректирующего конденсатора (как, например микросхема LM101A и ее аналог 153УД2). При этом быстродействующий канал, подключаемый к указанным выводам, строят на дискретных элементах. Указанными особеннос-тями реализации объясняется ограниченное при-менение этого способа коррекции.
Включение корректирующего конденсатора Скор, во-первых, приводит к уменьшению импульс-ной добротности интегрального операционного усилителя в (1 + Скор/Сис)1/2 раз и, соответственно ча-стоты единичного усиления f 1кор. При этом прихо-дится использовать более высокочастотные мик-росхемы, которые, как правило, обладают мень-шей радиационной стойкостью. Во-вторых, оно сопровождается заметным увеличением коэффи-циента передаточной функции интегрального операционного усилителя
b1кор = СкорRкор.эк + b1ис величиной которого лимитируется (для предот-вращения перегрузки по входу) наибольшая амп-литуда выходного напряжения усилителя.
Кроме этого происходит увеличение ВПР в b1кор / b1ис раз (причем часто 1кор / b1ис > 10) Возрастает амп-литуда отклонения выходного напряжения при ИИИ. Необхо-димо учитывать еще один недостаток коррекции интегрирующим конденсатором, заключающим-ся в следующем. Если из-за радиационного воз-действия сопротивление Rкор.эк уменьшается на-столько, что оно становится меньше Rкор.эк < (b2исF)1/2/Cис, то выбранная микросхема оказывается непригод-ной для обеспечения заданного усиления Кu с тре-буемым быстродействием. При этом требу-ется выбирать более высокочастотный интег-ральный операционный усилитель (независимо от того коррекция внутренняя или внешняя).
Наиболее простым и, одновременно, достаточно эффективным способом коррекции является вклю-чение в канал обратной связи резистивно-емкостной цепи (см. рис.4).
Этот способ коррекции ли-шен тех недостатков, свойственных коррекции по-средством Скор, и по своей эффективности уступает только коррекции включением быстродействую-щего канала. Коррекция резистивно-емкостной це-пью особенно эффективно в усилителях на трансимпедансных ИОУ.
В настоящее время большинство ИОУ выпускаются с внут-ренней коррекцией, в которых Скор обеспечивает нормальную работу микросхемы с обратной свя-зью при коэффициенте усиления Ки, не меньше указанном в справочнике значения (Ки = 1;2;5;10). При радиационном воздействии эффективность влияния Скор ослабляется из-за уменьшения Rкор.эк, что необходимо учитывать при проектировании усилителей, ориентируясь на большее значение Ки и, соответственно, меньшую глубину обратной связи, с тем, чтобы исключить возможность само-возбуждения ИОУ.
Отметим, что и в ИОУ с внутренней коррекцией целесооб-разно включение в канал обратной связи резис-тивно-емкостной цепи, которая позволяет до неко-торой степени исправить недостатки, обусловлен-ные внутренней коррекцией. Такой подход просто необходим при использовании трансимпедансных усилителей с внутренней коррекцией.
Следующий вопрос, требующий решения на этапе схемотехнического синтеза, это - выбор ви-да обратной связи. Выбор ОС по на-пряжению или по току решается в зависимости от назначения усилителя. В выходных усилителях, предназначенных для формирования импульсных сигналов с крутыми перепадами в высокоомной нагрузке с емкостной реакцией, лучшие результаты получаются при обратной связи по напряжения. В усилителях с токо-вым выходом, формирующих мощные им-пульсы тока с крутыми перепадами в низкоомной нагрузке с индуктивной реакцией, включают об-ратную связь по току.
Выбор последовательной ОС или параллельной однозначно решается в пользу пер-вой из них по следующим причинам. Во-первых, при заданной глубине обратной связи F схема с последовательной обратной связью обеспечивает усиление на единицу больше, чем при параллель-ной обратной связи. В этом нетрудно убедиться, рассматривая приближенные формулы, опреде-ляющие коэффициенты усиления:
Kunoc 1+R1/R2 и Kunoc 1+R1/Rд (*) где Rl и R2 - сопротивления резисторов в каналах обратной связи; Rд - выходное сопротивление датчика, напряжение которого усиливается. Из анализа соотношений (*) следует второй недостаток параллельной обратной связи, связан-ный с отклонением коэффициента усиления от номинальной величины, которое происходит из-за изменения сопротивления датчика Rд.
Ku/Ku = R1/ R1 - R2/ R2
Это особенно опасно в аппаратуре, предназначен-ной для работы в длительное время в условиях ра-диационного воздействия, когда требуется уста-новить деградацию параметров элементов схемы в зависимости от времени регистрации выходного напряжения усилителя. Что касается влияния из-менений сопротивлений резисторов R1 и R2, то при соответствующем выборе резисторов (напри-мер, пленочные резисторы) можно существенно уменьшить их рассогласующее действие при ра-диационном воздействии. В-третьих, так же как деградация сопротивлений Rд, R1 R2 влияет на точность усиления в области средних частот, из-менение емкостей СД, С1 С2, под воздействи-ем радиации приводит к отклонению выброса на вершине импульса или неравномерности АЧХ от номинальной величины, причем если в схеме с по-следовательной обратной связью отклонения С1 и С2 можно существенно уменьшить, то деграда-ция СД определяется видом датчика.
В-четвертых, в схеме с параллельной ОС имеется всего две степени свободы (С1 и R1), тогда как при последовательной обратной связи их четыре: R1 С1 R2, С2. Это существенное преимущество вообще, а в схемах, работающих при спецвоздействиях - в особенности, так как эти степени свободы позволяют проводить пара-метрическую оптимизацию схемы, обеспечивая тем самым значительное улучшение характерис-тик усилителя в области малых времен или выс-ших частот.
Преимущества последовательной обратной связи особенно ярко проявляются в предусилителях с противошумовой коррекцией и зарядо-чувствительных усилителях на малошумящих ин-тегральных операционных усилителях.
Насколько эффективны рекомендуемые спосо-бы улучшения сигнальных характеристик усили-телей, предназначенных для длительной эксплуа-тации в условиях стационарного радиационного воздействия, можно иллюстрировать на примере импульсного усилителя с коэффициентном усиле-ния Ки = 10 на микросхеме 153УД2. Чтобы исклю-чить самовозбуждение схемы потребовалось уве-личить емкость корректирующего конденсатора (Скор = 70 пФ) и ограничить значение коэффици-ента d2 (F - глубина OC). При этом время нарастания фронта переходной характеристики tн = 0.7 мкс при выбросе на вершине импульса 1 = 4.3%.
При реализации такого усилителя с коррекци-ей RC-цепью (см. рис.4) время нарастания фронта удалось уменьшить в 5.4 раза, т.е. оно ста-ло равным 0.13 мкс при выбросе = 2.9%.
Проверка на импульсные перегрузки по вход-ной цепи, лимитирующие наибольшую амплиту-ду выходного импульса Uвыхтиб, показала, что в схеме с Скор Uвьшпнб < 170мВ, тогда как примене-ние RC'-цепи позволило увеличить Uвыxmn6 в 8 раз, т.е. воспроизводить импульсы с крутыми перепа-дами наибольшей амплитудой Uъыхтнб = 1.35В!
Чтобы можно было реализовать усилитель с Ки= 10; tн = 0.13 мкс применением коррекции инте-грирующим конденсатором Скор, то надо было ис-пользовать интегральные операционные усилители с частотой единичного усиления f1ис = 38 МГц, т.е. в 5.4 раза большей f1ис, чем у 153УД2. При этом на-ибольшую амплитуду Uвыхотнб все равно не удается увеличить до уровня 1.35В. Учитывая, что более высокочастотная схема, как правило, менее радиационно-стойкая, то достоинства радиационных средств - очевидны! Аналогичные результаты получены и в широ-кополосных усилителях.
Уменьшение ВПР электронной аппаратуры.
Эта проблема возникает при проектировании электронной аппаратуры, предназначенной для работы в условиях кратковременного воздейст-вия мощного ионизирующего импульса, приводя-щего к сбою работы устройства или нарушению его нормального режима. При этом происходит существенное отклонение выходного напряже-ния интегрального операционного усилителя от нуля Uвых, амплитудой которого определяется уровень бессбойной работы аппаратуры, а време-ни спада Uвых до уровня, когда восстанавлива-ется нормальная работа усилителя, устанавлива-ется время восстановления работоспособности.
Как показывают исследования, продолжи-тельность ВПР в значительной степени определяется передаточной функцией усилителя: она уменьша-ется с увеличением глубины ОС F и с уменьшением коэффициентов передачи b2кор и b1кор. Поэтому и в данном случае коррекция инте-грирующим конденсатором Скор приводящую к увеличению b2кор=b2ис(1+Скор/Сис) в (1+Скор/Сис) раз, а b1кор=b1ис+СкорRкор.эк на величину СкорRкор.эк сопровождается ухудшением показате-лей усилителя, характеризующих его радиацион-ную стойкость: происходит существенное увели-чение ВПР и некоторое возрастание уровня бессбойной работы, определяемое увеличением амплиту-ды Uвых.
Заметное сокращение времени восстановления работоспо-собности и увеличение уровня бессбойной работы происходит опять же при коррекции RC-цепью в канале обратной связи.
Т.е. по всем характеристикам в условиях ионизирующих спецвоздействий более целесообразным является использование ИОУ с коррекцией резистивно-емкостными связями в канале после-довательной ОС.
Список литературы.
1. Агаханян Т.М., Аствацатурьян Е.Р., Скоробогатов П.К. Радиационные эффекты в интегральных микросхемах/Под ред. Т.М. Агаханяна. М.: Энергопромиздат, 1989.
2. Агаханян Т.М. Проектирование радиационно-стойких электронных усилителей на ИОУ
3. Оболенский С.В. Физико-топологическое моделирование характеристик субмикронных полевых транзисторов на арсениде галлия с учетом радиационных эффектов // Труды 3-го совещания по проекту НАТО SfP-973799 Semiconductors.// Нижний Новгород, 2003
4. Бойченко Д. В. , Никифоров А. Ю. Исследование влияния технологии на радиационную стойкость ОУ.// Радиационная стойкость электронных систем. Научно-технический сборник. 2000 / СПЭЛС
5. Агаханян Т.М. Схемотехнические способы повышения радиационной стойкости электронных усилителей на аналоговых микросхемах.// Микроэлектроника, 2004, том33, №3.
6. Агаханян Т.М., Никифоров А.Т. Прогнозирование эффектов воздействия импульсного ионизирующего излучения на операционные усилители.// Микроэлектроника, 2002, том 31, №31
7. Goddard Space Flight Center. TOTAL DOSE CHARACTERIZATION TESTS// http://radhome.gsfc.nasa.gov/radhome/papers/TIDPart.html
8. Агаханян Т.М. Синтез аналоговых устройств : Учебное пособие// М.: МИФИ, 1989
|